
Team 1: Final Project Design
Mason Wilde, Jacob Hegna, Gage Benne, Andy Monroe, Grant

Jurgensen

Project Name
Lawrence Trading Co.

Project Synopsis
Utilizing data science and Tensorflow machine learning, along with deep market data to
automate cryptocurrency trading using principal funding via AWS cloud computing.

Project Description
The field of algorithmic trading is already strongly established within the realm of traditional
stock exchanges. Typical strategies rely on extremely quick algorithms and low latency
connections to an exchange in order to make short-term trades. Often, algorithms are
implemented on a field-programmable gate array (FPGA) due to their speed, and the need to
trade as quickly as your competitors to maintain a viable trading strategy. These factors
combine to create a high barrier of entry into algorithmic trading on traditional exchanges.

In contrast, algorithmic trading of cryptocurrency is relatively undeveloped, and therefore
presents a strong opportunity to enter while competition is thin. Cryptocurrency exchanges are
hosted on the internet, which inherently creates a more even playing field than traditional
exchanges. Where trades can be made in a matter of nanoseconds on traditional exchanges
with direct connections, internet latency will be much higher for all parties. This also means we
will need to make strong changes to established techniques in algorithmic trading, as we cannot
assume low latency access to the exchange, and we cannot assume quicker access than our
competitors.

The end result will be a program which trades cryptocurrencies through an internet exchange
based on a machine learning algorithm, trained on market history data we have collected.

Project Milestones
First Semester:

1. Define deliverables: September 28
2. Initial Project Description: October 1
3. Build cryptocurrency trade monitor: October 5
4. Begin containerization with Docker: October 19
5. Project Proposal Report: October 22
6. Project Proposal Video: October 26
7. Begin developing Adversarial Neural Net Algorithm (ANNA): November 2

Second semester:

1. Final Project Design: February 11
2. Deadline for Implementing Pseudo-trading: March 17
3. Revisit & revise models and algorithms based on pseudo-trades: March 24
4. First Day of live trading: April 1
5. Get rich: April 2
6. Final Project Video: April 24
7. Quad Charts: May 8

Project Budget
This project will primarily utilize Google’s open source machine learning framework: Tensorflow.
Open source programming languages coupled alongside the machine learning framework such
as Python and C++ mean very little implementation costs. That being said, there will be costs
associated with hosting certain components of the project on Amazon Web Services (AWS).
We will utilize Amazon Aurora (RDS), a PostgreSQL-compatible relational database, to handle
the large amount of market data collected. As the main compute machine, an Amazon EC2
instance will handle pulling market data and populating the database, performing trades, as well
as managing data delivered to the machine learning instances Amazon SageMaker (Sage).
Making use of Sage will provide us the ability to build, train, and deploy machine learning
models quickly in a easy to manage environment. All in all, we are confident our costs will be
minimal, but will request reimbursement up to $1,000 for compute costs on AWS. (There is also
a stage in which we put our own money in the algorithmic trading platform, we will not include
this in the budget.)

Work Plan

Our roles are divided based on interest, capability, and what we each contributed last semester.
Following that template, Andy will work primarily on infrastructure: making sure our AWS
technologies run smoothly (RDS, EC2, and Sage) and ensuring our stack is fully integrated with
Docker. This will ensure that the other developers don’t have to worry about library/OS
compatibility issues between EC2 and their personal development machines. Gage will be the
database administrator, ensuring the databases follow consistent schemas and that the data
pipeline between EC2, RDS, and Sage runs smoothly. Gage will also, if time permits, work on a
data visualizer for current trading/profits and what data we have stored (price history). Mason is
the primary data scientist managing the machine learning models and handling the actual
correctness of our ML. Jacob will work on the code that actually executes the trades, in addition
to writing the code that communicates with Sage to continuously update the model to respect
the new trading information received during the day. Grant will be on flex duty: working initially
on integrating more exchange APIs for our data pipeline and ML training, then transitioning to
fixing bugs that occur during trade execution. Grant will also likely work with Gage to create a
web interface for the data visualization that goes alongside our project (realtime P&L, realtime
tracking of current assets owned, visualization of price history and projected future prices based
on the model).

Gantt Chart

Task Start Finish Assigned

Project proposal October 17 October 22 all

Video project proposal preparation October 24 October 26 all

Collection of raw cryptocurrency market
trading data September 20 February 28 Jacob / all

Cryptocurrency exchange research October 29 November 9 all

Manual modelling October 24 November 14 Jacob, Andy / all

Analyzing manual modeling October 31 November 14 all

Researching market indicators November 5 November 19 Grant, Mason / all

Tensorflow research November 19 December 17 all

Tensorflow and general machine learning
integration November 19 February 28 all

Data formatting to support machine
learning attempts December 17 January 21 Grant, Jacob / all

Assisted algorithm development from
collected data January 21 February 18 all

Validation and correction of generated
algorithms January 21 February 18 all

Final Design Document February 5 February 11 all

Cryptocurrency market integration February 8 March 15 Gage, Andy / all

Production and validation of generated
algorithms from real-time cryptocurrency
market March 11 March 22 Andy / all

Putting money on the line and verifying
results March 22 April 5 all

Project documentation October 24 April 24 Gage, Mason / all

Public presentation preparation April 17th April 24 all

Quad Chart May 1 May 8 all

Final Project Design
We have set some technical limitations on ourselves in order to keep the project focused and on
topic. We have decided to focus strongly on C++ and Python for our languages. C++ was
chosen due to its power, efficiency, and popularity, both within the group and industry-wide. This
is the language we will use for our computationally significant and time-sensitive components.
Python will be used in less computational sections of the project on account of its ease of use,
as well as its incredible external libraries such as TensorFlow. Note that TensorFlow and many
other Python libraries are written in lower level languages and merely expose a Python calling
interface. Likewise, we will use PyBind to establish our interoperability between C++ and
Python.

In particular, we will aim to have much of the trading infrastructure be implemented in C++, and
do market/strategy research in Python. For example, we will implement:

● Market data feeds/API access
● Trade execution
● Risk (keeping track of the amount of money exposed to various cryptos, with the ability

to override trades from the execution engine if they over-expose us. For example, if two
different trading strategies each decide to be long on Ripple, the risk platform might stop
the second trade because too much money would be dependent on that asset)

In C++. We will aim to implement things like a simulated trading environment, historical
backtesting, and database interaction in Python, as it is easier to get up-and-running in Python
and those features depend significantly less on low-latency code.

In live-trading, our infrastructure will resemble:

In reality, we will likely have different/more exchanges we listen to for marketdata. We will use
(at least) two databases, one which records the trades that our system made, and one that
records every piece of market data using a uniform format, so we can simulate trading days
later. Through live testing, we will determine which exchange has the deepest liquidity for our
trades (this is important, as in a low-liquidity exchange, incoming price data might not match
outgoing execution prices).

Our simulation environment will look nearly identical, with minor changes:

The trading algorithms, risk monitor, and execution engine will be identical to our live
environment (the only difference is that will instantiate the execution engine and trading
strategies with the testing objects, instead of their live counterparts. Dependency injection
allows us to abstract away information about the actual exchanges, and instead only worry
about the incoming/outgoing data). We will just be replaying historical market data from the
database. We will use a simulated exchange that records things like profit/loss, slippage,
Sharpe ratio, and volatility of our profits. The historical testing will be not only for training our ML
models, but as to do basic regression analysis. A core trading strategy will also be exploiting
correlations in different crypto prices.

For example, an early iteration of our code produced this graph (using matplotlib) which shows
a price trend within Ethereum and Ripple (adjusted for the scale of the prices):

Which shows the prices are clearly correlated. If we can find a lagging indicator for one of the
prices in terms of the other, we can predict price changes and trade accordingly.

In addition, we will attempt to support the Linux and macOS operating systems. This restriction
is not self-imposed, but rather a reflection of our development environments and final production
environment. The team is working on a combination of Ubuntu and macOS, and we hope to run
this software on Amazon Web Services, which supports a variety of Linux distributions.
Fortunately, these operating systems are relatively simple to co-develop for on account of their
shared heritage and near POSIX compliance.

Finally, we are constrained by the libraries available to us. Thankfully, there is a myriad of
powerful open source libraries such as TensorFlow that are available to be used freely.
Furthermore, there are libraries such as matplotlib and pybind which allow us to streamlight data
analytics and interaction between C++ and Python codebases.

On the business side, we are constrained by our schedule. The project has predefined
deadlines, and we are also limited by the availability of the team members and external time
commitments. Together, these set the scope of our project, and disallow us from expanding it
any further. Many trading teams take years to set up their core infrastructure and
testing/learning environments - clearly, we will not be able to have this much flexibility, so we will
have to skip some features. For example, many trading teams have a system which

automatically takes the recorded market data from that day of trading, updates their trading
models overnight, and then executes the new trading models the next day with no programmer
interaction. This frees the developers to work on new strategies. In contrast, we will likely have
to manually re-train our models on new data, and re-deploy the updated strategies to the trading
server.

Our budget will determine where we are able to run our code, the third party software which we
can license, and our ability to trade cryptocurrencies. We hope to acquire the funding to deploy
and maintain our project on Amazon Web Services. We will likely be able to rely totally on open
source and similarly licensed free software. However, we will need to interface with
cryptocurrency exchanges, which typically have fees associated with making a trade. Finally, we
will require initial funds in order to purchase cryptocurrency for our program to participate in real
trades. In order to save money, we will attempt to tune and train our algorithms throughout
development by simulating trades. Using real data, we would record trades the algorithm would
make in real-time, but without actually trading. We would then go back over our trades and
evaluate how successful the algorithm would have been. This is a significant constraint,
because we cannot perfectly simulate how a real trade would play out. We will need to make
assumptions on latency, and how our trades would actively affect the exchange, if at all.

Ethical and Intellectual Property Issues
Ethically, the primary issue of the project relates to its contributions to society as a whole. At its
core, the goal of the project is to maximize profitability for the people using the algorithm to
trade cryptocurrencies. In this regard, the project will only directly benefit its creators and will
have little to no positive effect on the rest of society. Concerns regarding negative effects to
society are also present. Simply put, the cryptocurrency market is a competitive environment,
and one party cannot move up without another moving down. Some refer to algorithmic trading
as a tax on retail investors, as the bots can get the best deals faster than any human ever could.
As the project is contained to cryptocurrencies rather than traditional stocks, this issue is less
concerning, but it still warrants mention. Ultimately, the potential negative impacts of the project
are minimal, while the benefits are potentially very high, if even for only a small group of people,
so we believe it is ethical.

Intellectual property will be slightly complicated for the project. There are two primary areas that
will require care to avoid any infringement. First, the trading algorithm itself will need to be fairly
unique. There are numerous sources of trading algorithms for the stock market available online
in various developer blogs, research articles, and other media. Most of this material is not
obviously licensed in any way, but it is also generally only a high level description of the
algorithm or technique. As long as no actual code is reused, use of the ideas available online
will be safe. Second, the machine learning algorithms used to train and predict information
about trades will be a mix of available tools and original code. Luckily, ML tools such as Scikit
and Tensorflow are very generous with their licensing, however, it must be verified that any
tools we use allow financial gain from their use.

Updated October 22, 2018: Finalized project proposal by adding project budget, work plan, gantt chart, preliminary project design,
as well as ethical and intellectual property issues.

Updated February 5, 2019: Prepared proposal for final project design by refining synopsis, simplifying project milestones, clarifying
work roles, refining budget to reflect cloud computation usage, as well as updating project design.

